243 research outputs found

    Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

    Get PDF
    We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology

    Hydrodynamic attraction of swimming microorganisms by surfaces

    Full text link
    Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to their re-orientation in the direction parallel to the surfaces, as well as their attraction by the closest wall. A model is derived for the steady-state distribution of swimming cells, which compares favorably with our measurements. We exploit our data to estimate the flagellar propulsive force in swimming E. coli

    Generic flow profiles induced by a beating cilium

    Full text link
    We describe a multipole expansion for the low Reynolds number fluid flows generated by a localized source embedded in a plane with a no-slip boundary condition. It contains 3 independent terms that fall quadratically with the distance and 6 terms that fall with the third power. Within this framework we discuss the flows induced by a beating cilium described in different ways: a small particle circling on an elliptical trajectory, a thin rod and a general ciliary beating pattern. We identify the flow modes present based on the symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ

    Superhero comics and the digital communications circuit: a case study of <i>Strong Female Protagonist</i>

    Get PDF
    This article examines the ongoing superhero webcomic Strong Female Protagonist (2012-present), by Brannon Lee Mulligan and Molly Ostertag and employs it as a case study to analyse the new communications circuit created by the digital production and delivery of comics. It adopts a perspective drawn from Book History to frame the communication model of print comics and to evaluate how webcomics such as Strong Female Protagonist redefine the role of readers, authors and publishers

    Motor-Driven Bacterial Flagella and Buckling Instabilities

    Get PDF
    Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff's elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torque. We present a sophisticated analytical model for the buckling transition based on a helical rod which quantitatively reproduces the critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of pulling flagella along the driving torque is not stable and comment on the biological relevance for marine bacteria.Comment: 15 pages, 11 figure

    Dealing with the mess (we made): Unraveling hybridity, normativity, and complexity in journalism studies

    Get PDF
    In this article, we discuss the rise and use of the concept of hybridity in journalism studies. Hybridity afforded a meaningful intervention in a discipline that had the tendency to focus on a stabilized and homogeneous understanding of the field. Nonetheless, we now need to reconsider its deployment, as it only partially allows us to address and understand the developments in journalism. We argue that if scholarship is to move forward in a productive manner, we need, rather than denote everything that is complex as hybrid, to develop new approaches to our object of study. Ultimately, this is an open invitation to the field to adopt experientialist, practice-based approaches that help us overcome the ultimately limited binary dualities that have long governed our theoretical and empirical work in the field

    Conclusions and recommendations of a who expert consultation meeting on iron supplementation for infants and young children in malaria endemic areas [Conclusions et recommandations à l\u27issue de la consultation de l\u27oms sur la lutte contre la carence martiale chez le nourrisson et le jeune enfant dans les pays d\u27endémie palustre]

    Get PDF
    This article presents the results of an expert consultation meeting aimed at evaluating the safety and public health implications of administering supplemental iron to infants and young children in malaria-endemic areas. Participants at this meeting that took place in Lyon, France on June 12-14, 2006 reached consensus on several important issues related to iron supplementation for infants and young children in malaria-endemic areas. The conclusions in this report apply specifically to regions where malaria is endemic

    Fluid transport at low Reynolds number with magnetically actuated artificial cilia

    Full text link
    By numerical modeling we investigate fluid transport in low-Reynolds-number flow achieved with a special elastic filament or artifical cilium attached to a planar surface. The filament is made of superparamagnetic particles linked together by DNA double strands. An external magnetic field induces dipolar interactions between the beads of the filament which provides a convenient way of actuating the cilium in a well-controlled manner. The filament has recently been used to successfully construct the first artificial micro-swimmer [R. Dreyfus at al., Nature 437, 862 (2005)]. In our numerical study we introduce a measure, which we call pumping performance, to quantify the fluid transport induced by the magnetically actuated cilium and identify an optimum stroke pattern of the filament. It consists of a slow transport stroke and a fast recovery stroke. Our detailed parameter study also reveals that for sufficiently large magnetic fields the artificial cilium is mainly governed by the Mason number that compares frictional to magnetic forces. Initial studies on multi-cilia systems show that the pumping performance is very sensitive to the imposed phase lag between neighboring cilia, i.e., to the details of the initiated metachronal wave.Comment: 12 pages, 10 figures. To appear in EPJE, available online at http://dx.doi.org/10.1140/epje/i2008-10388-
    corecore